N-lysine propionylation controls the activity of propionyl-CoA synthetase.

نویسندگان

  • Jane Garrity
  • Jeffrey G Gardner
  • William Hawse
  • Cynthia Wolberger
  • Jorge C Escalante-Semerena
چکیده

Reversible protein acetylation is a ubiquitous means for the rapid control of diverse cellular processes. Acetyltransferase enzymes transfer the acetyl group from acetyl-CoA to lysine residues, while deacetylase enzymes catalyze removal of the acetyl group by hydrolysis or by an NAD(+)-dependent reaction. Propionyl-coenzyme A (CoA), like acetyl-CoA, is a high energy product of fatty acid metabolism and is produced through a similar chemical reaction. Because acetyl-CoA is the donor molecule for protein acetylation, we investigated whether proteins can be propionylated in vivo, using propionyl-CoA as the donor molecule. We report that the Salmonella enterica propionyl-CoA synthetase enzyme PrpE is propionylated in vivo at lysine 592; propionylation inactivates PrpE. The propionyl-lysine modification is introduced by bacterial Gcn-5-related N-acetyltransferase enzymes and can be removed by bacterial and human Sir2 enzymes (sirtuins). Like the sirtuin deacetylation reaction, sirtuin-catalyzed depropionylation is NAD(+)-dependent and produces a byproduct, O-propionyl ADP-ribose, analogous to the O-acetyl ADP-ribose sirtuin product of deacetylation. Only a subset of the human sirtuins with deacetylase activity could also depropionylate substrate. The regulation of cellular propionyl-CoA by propionylation of PrpE parallels regulation of acetyl-CoA by acetylation of acetyl-CoA synthetase and raises the possibility that propionylation may serve as a regulatory modification in higher organisms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification and characterization of propionylation at histone H3 lysine 23 in mammalian cells.

Propionylation has been identified recently as a new type of protein post-translational modification. Bacterial propionyl-CoA synthetase and human histone H4 are propionylated at specific lysine residues that have been known previously to be acetylated. However, other proteins subject to this modification remain to be identified, and the modifying enzymes involved need to be characterized. In t...

متن کامل

Inhibition by propionyl-coenzyme A of N-acetylglutamate synthetase in rat liver mitochondria. A possible explanation for hyperammonemia in propionic and methylmalonic acidemia.

In the search for the mechanism by which hyperammonemia complicates propionic and methylmalonic acidemia the effects of a series of acyl-coenzyme A (CoA) derivatives were studied on the activity of N-acetylglutamate synthetase in rat liver mitochondria using acetyl-CoA as substrate. Propionyl-CoA was found to be a competitive inhibitor. The inhibition constant of 0.71 mM is in the range of conc...

متن کامل

Cyclic AMP-dependent protein lysine acylation in mycobacteria regulates fatty acid and propionate metabolism.

Acetylation of lysine residues is a posttranslational modification that is used by both eukaryotes and prokaryotes to regulate a variety of biological processes. Here we identify multiple substrates for the cAMP-dependent protein lysine acetyltransferase from Mycobacterium tuberculosis (KATmt). We demonstrate that a catalytically important lysine residue in a number of FadD (fatty acyl CoA synt...

متن کامل

The effect of vitamin B12 deprivation on the enzymes of fatty acid synthesis.

The enzymes of fatty acid synthesis from liver and brain in normal and Blz-deprived rats were studied. Both total and specific activities of fatty acid synthetase and acetyl coenzyme A carboxylase were 2to 5-fold greater in Blz deprivation than in the normal state. The presence of excess activators in the BIp-deprived rat or an excess inhibitor in the normal rat was not found by serial admixtur...

متن کامل

Structural basis for acyl-group discrimination by human Gcn5L2

Gcn5 is a conserved acetyltransferase that regulates transcription by acetylating the N-terminal tails of histones. Motivated by recent studies identifying a chemically diverse array of lysine acyl modifications in vivo, the acyl-chain specificity of the acetyltransferase human Gcn5 (Gcn5L2) was examined. Whereas Gcn5L2 robustly catalyzes lysine acetylation, the acyltransferase activity of Gcn5...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 282 41  شماره 

صفحات  -

تاریخ انتشار 2007